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We study the thermodynamic concept of isolation. The causal motion of a system 
that models a thermodynamic "universe" but nevertheless couples to a surround 
is reconciled with an increase of entropy--in the manner of the second law of 
thermodynamics--for the system. The system's ket space is n-dimensional, the 
surround's is K-dimensional, and the initial state is taken "purepure": the tensor 
product of a pure n-state with a pure K-state. Near-maximal entropy is found 
for the reduced n-state in deep time, first for most random Hamiltonians, then 
also under restriction to weak n-K coupling--but then with a shortfall of about 
1 bit. 

1. T H E  H O M O G E N E O U S  M E A N  TRACE O F  T H E  S Q U A R E  

Where  does ent ropy come from? The reduced densi ty matr ix  p of a 
subsystem is usual ly  mixed,  even if the larger, enveloping  state is pure.  
Indeed ,  nea r -max ima l  en t ropy  is found  from jus t  this reduct ion.  Here we 

look at a r a n d o m  envcloping uni t  vector's state matrix uu ~, bypassing 

motion,  so there is as yet no  Hamil tonian.  Our  so-called H O M O G E N E O U S  
no t ion  of r a n d o m n e s s  is a d is t r ibut ion  un i fo rm in the "a rea"  on the un i t  
sphere. We begin  with a newly styled account  of Lubk in  (1978) as a sui table 
preface,  after further  in t roduc tory  convent ions  and  bows. 

Nota t ion .  The usua l  conven t ion  of impl ied  summa t i on  over twice- 
repeated indices  applies.  More  compl ica ted  sums will be explicit. Lowercase 

R o m a n  labels i, j , . . .  r un  over n dist inct  values,  uppercase  R o m a n  labels 
over K values;  Greek labels run  over n K  values;  bu t  early lowercase R o m a n  
labels a, b, c, d share some d o m a i n  of common ,  unspecif ied size N. 
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934 Lubkin and Lubkin 

Abbreviation. "trsq" for "trace of the square." We consider the mean- -  
first over a homogeneously distributed unit vector UiA in nK-dimensional 
Hilbert space--of  the trsq of the reduced density matrix p obtained from 
the projection on u, by tracing over the K-labels (our jargon: "Landau"  
tracing). In symbols: trsq = trace(p2), where Pv = UiaUf A" 

In this Section 1 we review (Lubkin, 1978) the homogeneous averaging 
of trsq to " H M G ( t r s q ) " - - o r  briefly to (trsq) when the sort of averaging is 
clear--and thereafter we note the link to the second law of thermodynamics, 
of the resulting identity H M G  or equation (1). 

Two other, newer sorts of averagings, called ISOTROPIC- - ISTR ,  
equation (7)--and WEAK--WK,  equation (12)--will be developed in later 
sections. They will yield progressively finer links between (quantum) 
mechanics and the second law of thermodynamics, the WEAK being perhaps 
reminiscent of Boltzmann's H-theorem in its intent. 

On, then, to resume development of the HOMOGENEOUS average. 
The result, (1) or HMG,  is given in terms of trsq, rather than in terms of 
the less symmetric impurity = (1 - trsq)/(1 - I / n )  of Lubkin (1978); it is 

n + K  
( t r s q ) - - -  H M G  (1) 

n K + l  

Derivation of HMG,  equation (1): (trsq) is U~AU*A squared, traced, and 
averaged: 

( trsq) = * * (UiAUjAUjBUiB) preQRTC (2) 

Go to rules for means of products of Cartesian components: Product of 
Kronecker deltas 1, times a numeric, deltas only between con juga tes , . . . .  
Our quartic pattern in equation (2), namely 

(ab*cd*), yields C(lablca + ladlbc) 

Fix constant C through an inductive stepdown: 
Vector u is a unit vector, so (UaUa*)=(1) = 1. On the other hand, the 

quadratic analog of the quartic pattern evaluates 

(uau~) = C'l~b 

for some other unknown constant C'. Let N be the dimension (which is 
nK for our first application). Contraction gives (uau*) = C'N,  whose known 
value 1 gives C ' =  1/N. Hence 

1 
( UaU *b ) = "~ 1.b 

is the length-2 QUADRATIC "answer"; abbreviated 

1 
(ab*)=-~  lab Q D R T  (3) 
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Use QDRT, equation (3), to now find the quartic pattern's  C by a 
contraction: (ab*cc*) =(ab*) = (1 /N) lab  also equals C(lablcc+ l~clbc), 
which is C ( l a b N +  lab) = C ( N +  1)lab. Hence C = 1 / N ( N +  1), which com- 
pletes our length-4 answer: 

1 
(ab*cd*) (lablcd+ladlbc) QRTC (4) 

N ( N + I )  

Apply QRTC, equation (4). The overall dimension is now N = nK, and 

1 
(U,AU*AU~BU*~) = nK ( nK + 1) ( liAjAljBm + 1,AiBljAjB) 

1 
= n K ( n K  + 1) ( l i jK 1jiK + n 1ABnlAB) 

1 
(nK2 + Kn 2) 

- n K ( n K  + 1) 

from which nK cancels to give HMG, equation (1). �9 

Discuss ion 

HMG,  equation (1), already goes far to finger the normalized unit 
matrix as a good approximat ion to a typical reduced density matrix when 
K is large: The limit of  the (trsq) value (n + K ) / ( n K  + 1) as K goes infinite 
is evidently 1/n. This is also the trsq of the trace-normalized n-dimensional 
unit matrix. As all other n by n density matrices have larger trsq, closeness 
in regard to this single statistic trsq suffices to establish closeness matricially 
to the normalized unit matrix. 

Impor t?  Landau tracing not only generates entropy in an n-sector 
of  interest, but generates enough entropy to support  the second law of 
thermodynamics.  

On the other hand, maximal entropy, when K < n, is only In K, so the 
normalized unit matrix, of  larger entropy in n, cannot even occur as a 
reduced density matrix, unless K >- n. Let the case K = n then be our notion 
of sma[l surround. Here (n + K) / (nK+ 1) reduces to 2n/(n 2 + 1), which is 
roughly 1/(n/2). That  is the trsq value for a trace-normalized unit matrix 
in half  the system's dimension, which shrunken matrix has entropy 1 bit 
tess than the n-dimensional normalized unit matrix. So the penalty for a 
"small surround" appears to be about a 1-bit shortfall in the entropy from 
the maximum possible value I n n  favored by the second law. 

We shall see a 1-bit shortfall appear  later, for a different reason, when 
we consider instead the interaction of an n-system with the more usual 
large-K surround (K  >> n) when we impose the restriction that interaction 
with the surround be WEAK. 
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2. E H R E N F E S T S  

This whole business, beyond HMG, equation (1), stems from a quantal 
improvement (Lubkin and Lubkin, 1990) on the Ehrenfests' urn model 
(Klein, 1970). 

Start with a "purepure"  state--tensor product  of pure n-state with pure 
K-s ta te - -bu t  let a t ime-independent Hamiltonian H move it. Overall purity 
will of  course be maintained, but purepurity will [almost always] be lost; 
curves showing that loss, e.g., graphs of trsq falling from value 1 at time 
t = 0, then oscillating, carry the same intuitive sense as the Ehrenfests'  
aleatory model: development of a fluctuating entropy, etc.--while yet 
eschewing anything aleatory in the process of  evolution in time. Perhaps 
needless to say, the arbitrariness of the sort of H we favor, a matrix chosen 
randomly, does inject an aleatory quality, but no "dice"  get thrown as time 
passes. 

We have a random law of  motion, not a law of random motion! 

3. D E E P  TIME 

Does (trsq), but now averaged over time, still evaluate to HMG, 
equation (1) ? 

Of course not: The result depends on choices, which H and which 
initial purepure state. More geometrically:  The motion, while [almost 
always] ergodic over the nK-real-dimensional motional torus marked by 
nK increasing phases of  the Hamiltonian's nK eigenkets, does not go 
everywhere, because that torus is a proper submanifold of the whole sphere 
of  nK-complex-dimensional  unit vectors. 

But is answer HMG, (1), recovered when time-averaged trsq's are 
further averaged ISOTROPICALLY over H ' s ?  We make this " isotropy" 
of  Hamiltonians precise, and find "almost, but not quite": our initial 
purepurity does bias the isotropic average ~ trsq~ a small amount A above 
HMG. 

To reach A, equation (7), and also to enable fetching a time-meaned 
trsq without approximating from an actual Monte Carlo run, we first get 
D E EP TIME formula DPT, (6), where H and the initial state are fixed. 
[Monte Carlo runs indeed check DPT, equation (6).] This story is here 
abbreviated to making precise our "isotropic" distribution of  H's ,  then 
giving "an  early suggestive step," and then one version of the result--DPT, 
(6) [which we repackaged, however, for faster computation]. 

"Isotropic" Defined. N by N Hermitian matrices A, B , . . .  form a vector 
space under real linear combination. With real inner product  "trace AB," 
these Hermitians form a real Euclidean N2-dimensional metric space. It is 
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when we think of  Hamiltonians as real vectors in this Euclidean sense that 
we simply ask for an isotropic distribution. To attain this isotropy on a 
computer, we select Cartesian components subject to a Gaussian random 
process: easy. [We are not presenting outputs here; but these were important 
in keeping us honest and confident in going from one step to the next! See 
Lubkin and Lubkin (1990) for a few outputs.] 

"'An Early Suggestive Step," equation (5), is obtained from equation (2) 
by expanding an initial ket I Y) on the Hamiltonian's eigenbasis. This step, 

trsq( t) = (iA I~ } (flljA )(jBIT ) ( SliB) exp [ x f - ~ ( E ~  - E~ + Es - E~) x t] 

x (~[y ) (y l f i } (y ly ) (y l6}  (5) 

features nK Greek-labeled angular-bracketed kets 1.} eigen for the Hamil- 
tonian, but also round-bracketed kets I.) which constitute what we call our 
"spindle" basis, l iA) being the ith basic n-space vector tensor-multiplied 
into the Ath basic K-space vector. Thus [.) defines our notion of the 
nK-space as "constituted of an n-part and a K-part2 '  

Rejecting a population of  zero measure allows us to pass to the generic 
case, where the exponential in time t mostly averages to 0; otherwise to 1, 
and 1 precisely when/3 is either o~ or 3,, and the other two Greek indices 
also match. 

The result is DEEPTIME formula DPT, (6): 

D P T  trsq = - ~, ( ial~ ) ( aly )(y]a) ( a l ja  ) (jB]a ) ( aly )(yla) ( a] iB ) 
c~ 

+ ~ (iAlc~)(aly)(yl~)(a]jA) 2 (jBIT)(TIy)(yIT)(TIiB) 
c~ T 

+ E (iAl~><~ly)(yl~>(aliB) E (jBI~><~Iy)(yI~>(~IjA) 

D P T  (6) 

[In runs, without loss of generality under our desideratum of purepure 
factorizability of initial ket l Y), we used a single basic spindle ket for l Y); in 
symbols, lY) = [ioAo).] 

Remarks. Only "direction cosines" between spindle I. ) and eigenbasis 
].) occur in DPT, (6). So further ISOTROPIC averaging of (6) is pure 
geometry, hence clean fun, and perhaps this is why we did it. The products 
are all of  eight such cosines, and that forced us to parallel the earlier 
identities QDR, (3), and QRT, (4), with an octic identity featuring two 
vectors rather than just one- -as  the main tool along the way. That lengthy 
computation is omitted, but the answer is as follows: 
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The ISOTROPIC average (7) of  the deeptime average DPT (6) of  trsq 
is given by 

n + K  
HMG(trsq) nK + 1 

ISTR(trsq) = HMG(trsq)+ A ISTR (7) 

2 ( n K + l - n - K )  
A= 

nK(nK + l ) (nK + 3) 

The increment A is indeed small compared to the old part  (1), HMG, 
of the answer-- (7)  or ISTR. Even in the 2, 2 case (n = 2 and K = 2), where 

4 56 H M G  is ~ = ~6, A is already only ~0. 
The attainment of  near-maximal entropy through encompassing 

mechanical motion from a start at zero entropy, in the typical case favored 
by an ISOTROPICal ly  distributed choice of  Hamiltonian,  is now estab- 
lished, by this smallness of  A. The limit of  ISTR, (7), as K goes infinite 
remains 1/n. The value of ISTR (trsq), equation (7), for the case K = n of  
small surround exceeds the corresponding equation (1), HMG, value, 
2n/(n2+ 1), by only 2(n 2 - 2 n  + 1)/[n2(n2+ 1)(n2 + 3)], so that even for small 
surround, ISTR (trsq), like H M G  (trsq), is still near 1/(n/2),  and the esti- 
mate of  1-bit shortfall in the entropy from smallness of  the surround stands 
as before. 

4. W E A K  I N T E R A C T I O N  

But all is not yet well. The mean looks at nK by nK Hamiltonians so 
isotropically as to make no distinction between n-system, K-system, and 
their coupling. I f  both systems are so thoroughly tied together, then perhaps 
it is not reasonable to treat them separately at all. Most transparently, strong 
coupling is surely ir~consistent with thermodynamic  isolation of the n- 
system. 

So we look instead, now, at Hamiltonians 

H = Hsys  + H s u r +  Hin t  

that are each a sum of an n-part  for the system, HsysiAjB = hsysijla~, of a 
K-par t  for the surround, Hsur~AjB = 10HSURAB, and of a still generic 
interaction part  Hint ,  made weak, however, by being multiplied by a 
small positive parameter  3,. [What we did on the computer  was to first ISO- 
TROPICal ly  pick a random generic precursor.Hiaj~, Gaussianly as before, 
f rom which the parts hsys and H S U R  were picked out, by the two appro- 
priate partial (Landau) tracings; we could also scale hsys and H S U R  by 
respective parameters  /~ and v. The residue, now trace-orthogonal to  both 
forms "'matrix~jlAB" and "loMATRIXAB," was scaled by A to give Hint.]  
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The "weak limit" then imposes 

h << #, h 5< u DEF W E A K  (8) 

Does this WEAK bias away from ISOTROPICity spoil the attainment in 
the mean of  the minimal trsq value 1In in the limit of large K ? Indeed the 
second law is challenged, but "only a bit": The weak limit of trsq, with 
also K put infinite, gets enlarged to 1/[(n + 1)/2], near enough to 1/(n/2) 
to indicate an entropic shortfall of  about '1 bit. The following sketches the 
way to the WEAK resul ts--WK DPT, equation (9), for a generic weak 
run- -and  WK, equation (t2), the isotropized of (9), for trsq. 

All we need is to apply DPT, equation (6), once more. That was good 
for any generic Hamiltonian, that is, any !HiAjB whose nK eigenvalues are 
linearly independent over the rationals. Fooling around with h, /~, and v, 
all positive, does not spoil the measure-zero quality of rational dependence; 
hence DPT, equation (6), will still apply t9 almost all runs, hence to getting 
a new WEAKly meaned trsq. We must choose h small, but not zero, and 
look at runs deep in time, which is, formally , to take the limit of infinite 
time first, before putting h to zero. Conveniently, this is automatically 
accomplished by simply using unweak forrpula DPT, (6), before specializing 
to weak. In the weak limit, the nK-eigenkets Ia), etc., tensor-factor into 
n-eigenkets of hsys and K-eigenkets of HSUR;  thus, [a~ = [iA) = [i)[A). A 
typical "direction cosine" (jB[a), say, in equation (6), would now become 
(jB[iA), which factors into (j] i)(BIA). Skipping over some algebra, we give 
the surprisingly compact result for a generic weak run: 

where 

(trsq) = x + y - x y  WK DPT (9) 

x=521(i01i)J 4 DEFx (10) 
i 

is the sum of  fourth powers of the absolute value of the inner product  
between the initial n-ket and the direction of  each n-space eigenket; and 
where y is the analogous quantity for the' K-space: 

y=El(AolA)l '  DEFy (11) 
A 

Here the brackets ( . )  around trsq signify averaging in time, over a run, and 
we have yet to average also over weak Hamiltonians, that is to say, 
ISOTROPICally,  but subject to the impo$!tion of coefficients A,/z, p, with 
h small. 

But A, /~, l, already do not survive i~a formulas (10) and (11). So all 
that remains to effect the ISOTROPIC W E A K  averaging is to average 
x + y - x y .  Here x depends only on the Way the initial n-ket splits on the 
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n-eigenframe, y only on how the initial K-ke t  splits on the K-eigenframe,  
and all is once more simply geometry, indeed with n and K separated. 

To get an ISOTROPIC WEAK average (x) in place of  x, we resort 
again to QRT identity (4), namely 

1 
(ab* cd*) ( lablcd + lad lbc) 

N ( N + I )  

but now with a = b = e = d and N = n, to get the mean for a single com- 
ponent ' s  fourth power, namely (aa*aa*)= 2/n(n  + 1) for each fixed value 
of a. Summing on a then yields 

2 
( x )  --  

n + l  

Similarly, 

and 

2 (y) = - -  
K + I  

ISTR WK ( trsq) = (x).+ (y) - (x)(y) 

2 2 4 
- 4 - -  

n + l  K + I  ( n §  

2(K + n) 
ISTR W K ( t r s q ) -  WK (12) 

( K + l ) ( n + l )  

The limit for large K is 2/(n + 1), about  twice the unweak minimum 
trsq of l/n, thus indicating an entropic shortfall of about  1 bit, to slightly 
weaken our confidence in mechanical  support  for the second law! I f  we 
instead put K = n (small surround), we find 4n/ (n  + 1)2, a shortfall of  about  
2 bits: showing that the weak- and small-surround shortfalls are different 
matters, by refusing to fuse here. 

Approach to weak interactions by PARADOXES [and REFUTA- 
TIONS ]: 

�9 In the infinitely weak limit, purepurity is preserved, hence isotropic 
weak trsq should be 1, and not WK, (12), as stated! 
[ Wrong order of limits of weakness zero and time infinite.] 

�9 So avoid this mistake by a finite but very weak interaction. Still keep 
purepurity,  because each exact energy is near one unperturbed 
energy; hence NO amount  of  waiting will give transitions! 
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[ Truly there are negligibly few transitions; indeed, this is the traditional 
isolation of the second law! The mistake is in tacitly addressing the 
single energy level. A free purepure state begins expanded over many 
levels. ] 

�9 But that superposition will not help, because purepurity initially 
demands a product  of an n-superposition with a K-superposition, 
and nothing more complicated. The n-one does its motion, the K-one  
its, hence the factorization remains unspoilt, and the right answer 
remains 1 ? 
[This merely reverts to not giving the weak interaction enough time. 
Indeed, the generic weak interaction adds a different small random 
energy to each of the nK eigenvalues--in first-order perturbation theory 
the expectation value of the interaction Hamiltonian--to the unpertur- 
bed n- and K-energies. In time, these nK different small increments 
generate large phase angles. The initial phasing that effects factoriz- 
ation--purepurity--is thereby ruined. ] 

Detail. We observed in actual runs that large nK goes with random 
Hamiltonians that individually demonstrate average behavior. This is reason- 
able, in retrospect: Indeed, arbitrarily split the set of eigenspaces of the 
reduced density matrix into subsets. Owing to the arbitrariness, the same 
statistical facts will  hold in each subset. Statistics of all the eigenvalues 
together would then be seen as averaging over similar subpopulations, hence 
Subject to a law of large numbers, and so to a conformity between the 
typical and the average. 

This "detai l"  partly refutes the objection that this work is empty of 
physical content, in refusing to focus on any particular Hamiltonian, by 
fancifully choosing to average our statistic (trsq) over (infinitely) many 
Hamiltonians. "Partly": ISOTROPIC bias indeed acts in our nK Gaussian 
choices of matrix element, in upping even a single Hamiltonian. 

5. THERMODYNAMIC ISOLATION 

This perhaps repeats our second paradox-and-refutation, but it is worth 
the space, as the mystery of thermodynamic isolation is the whole point of 
this work. Mystery? A mechanically isolated system, by definition, moves 
under SchriSdinger's Hamiltonian-driven equation, hence maintains the 
eigenvalues of its density matrix; in particular, its entropy is conserved. But 
the second law of thermodynamics would have the entropy of an isolated 
system increase to a maximum. This conflict forces us to regard thermody- 
namic isolation as being distinct from mechanical. A thermodynamically 
isolated system must be coupled to a surround strongly enough to damage 
purepurity, in the manner of our WEAK interaction, while yet sharing some 
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quality in common with the more rigorous mechanical sort of isolation. So 
our model of  the thermodynamic system is the n-dimensional ket space, 
coupled WEAKly to a K-dimensional  ket-space surround. Entropic isolation 
is spoilt, for the benefit of  the second law, but then what "isolation" is left? 
We still have conservation of the n-system's own energy, in a detailed 
manner, and not just in the sense of  balance against the K-system acting 
as a heat bath. The "reservoir" in the title of Lubkin (1978), while appropri- 
ate for less-weak coupling, has here become "surround,"  precisely to avoid 
the implication that it is a heat bath, in the present context of  weak limit. 
Indeed, the n-system is here the model for a complete thermodynamic 
UNIVERSE, including all baths. The only function served by the K-system 
is the disordering of the n-system, to satisfy the second law's demand for 
d i sorder - -o f  a thermodynamically isolated entity, or "universe." 

Hence the n-system must have a reasonably strict conservation of its 
own energy, in spite of its weak coupling to the K-system. This conservation 
of n-energy is what we do in fact get from first-order t ime-independent 
perturbation theory: The perturbed energies are of course conserved, but 
also each perturbed energy lies close to one unperturbed sum of  an n-energy 
and a K-energy--where  we neglect degeneracies as accidents of  no measure. 
Thus, weakness does preserve the n-energy. 

This conclusion does not reach our goal, of  understanding increase of  
the n-entropy, if we restrict it to a single energetic eigenstate, for then 
purepurity will never get markedly broken, and n-entropy will not markedly 
increase. We must rather contemplate a general state. The probabilities of 
distinct n-energies are preserved; and this is the thermodynamic isolation 
we seek: "unobserved energetic microcanonicality." Entropy of  the n-system 
grows to near maximum, hence-- incidental ly--cannot  coincide With the 
essentially constant formal entropy, -~. p In p, cooked up from the energetic 
probabilities p, which vary negligibly in time. Indeed, the n-system's reduced 
density matrix p does not start out codiagonal with the n-energy. 

There is also no further n-conservation, aside from conservation of 
energy, within this model: Other conserved quantities would render the 
energy degenerate, and our random Hamiltonians almost always avoid that. 
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NOTE ADDED IN PROOF 

Don N. Page has kindly sent us a manuscript wherein he confirms and 
sharpens the Lubkin (1978) estimate of the small deficit in n-system's 
entropy within an enveloping random pure nK state. 
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